Given an array of n integers nums and a target, find the number of index triplets
i, j, k
with 0 <= i < j < k < n
that satisfy the condition nums[i] + nums[j] + nums[k] < target
.
For example, given nums =
[-2, 0, 1, 3]
, and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1] [-2, 0, 3]
Follow up:
Could you solve it in O(n2) runtime?
Could you solve it in O(n2) runtime?
Solution 1: i iterate through the array, j, k is the typical two sum > or < target issue. O(n^2) solution.
public class Solution {
public int threeSumSmaller(int[] nums, int target) {
int n=nums.length;
if (n<3) return 0;
Arrays.sort(nums);
int res=0;
for (int i=0; i<n; i++) {
int j=i+1, k=n-1;
while (j<k) {
int sum=nums[i]+nums[j]+nums[k];
if (sum<target) {
res+=k-j;
j++;
}
else k--;
}
}
return res;
}
}
没有评论:
发表评论