Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
b) Delete a character
c) Replace a character
Solution 1: DP without Space optimization, easy to understand. Time O(mn), space O(mn).
public class Solution {
public int minDistance(String word1, String word2) {
int m=word1.length();
int n=word2.length();
int[][] dp=new int[m+1][n+1];
for (int i=0; i<=m; i++) {
for (int j=0; j<=n; j++) {
if (i==0) dp[i][j]=j;
else if (j==0) dp[i][j]=i;
else if (word1.charAt(i-1)==word2.charAt(j-1)) dp[i][j]=dp[i-1][j-1];
else dp[i][j]=Math.min(dp[i-1][j-1],Math.min(dp[i-1][j],dp[i][j-1]))+1;
}
}
return dp[m][n];
}
}
Solution 2: Optimize Space to O(n)
public class Solution {
public int minDistance(String word1, String word2) {
int m=word1.length();
int n=word2.length();
int[] dp=new int[n+1];
for (int i=0; i<=m; i++) {
int pre=0;
for (int j=0; j<=n; j++) {
int temp=dp[j];
if (i==0) dp[j]=j;
else if (j==0) dp[j]=i;
else if (word1.charAt(i-1)==word2.charAt(j-1)) dp[j]=pre;
else dp[j]=Math.min(pre,Math.min(dp[j],dp[j-1]))+1;
pre=temp;
}
}
return dp[n];
}
}
没有评论:
发表评论