The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where
'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]Solution 1: DFS, each row can have only one 'Q', use this condition will simplify the result a lot;
public class Solution {
public List<List<String>> solveNQueens(int n) {
char[][] matrix=new char[n][n];
for (int i=0; i<n; i++) Arrays.fill(matrix[i],'.');
List<List<String>> res=new ArrayList<>();
dfs(0,n,matrix,res);
return res;
}
private void dfs(int row, int n, char[][] matrix, List<List<String>> res) {
if (row==n) {
List<String> one=new ArrayList<>();
for (int i=0; i<n; i++) one.add(new String(matrix[i]));
res.add(one);
}
else {
for (int i=0; i<n; i++) {
if (validate(matrix,row,i,n)) {
matrix[row][i]='Q';
dfs(row+1,n,matrix,res);
matrix[row][i]='.';
}
}
}
}
private boolean validate(char[][] matrix, int i, int j, int n) {
for (int k=1; i-k>=0; k++) //check top
if (matrix[i-k][j]=='Q') return false;
for (int k=1; i-k>=0 && j-k>=0; k++) //check top left
if (matrix[i-k][j-k]=='Q') return false;
for (int k=1; i-k>=0 && j+k<n; k++) //check top right
if (matrix[i-k][j+k]=='Q') return false;
return true;
}
}
没有评论:
发表评论