Given an unsorted array, find the maximum difference between the successive elements in its sorted form.
Try to solve it in linear time/space.
Return 0 if the array contains less than 2 elements.
You may assume all elements in the array are non-negative integers and fit in the 32-bit signed integer range.
Solution 1: As request for O(n) time and O(n) space. Use bracket. The max gap must be greater than gap=(max-min)/(n-1). So we can create n bracket: [min,min+gap), [min+gap,min+2gap).... the result must be value between brackets instead of within bracket. So first step is allocate all numbers into the bracket, then iterate the bracket to find max inter-bracket value.
public class Solution {
public int maximumGap(int[] nums) {
int n=nums.length;
if (n<2) return 0;
int max=Integer.MIN_VALUE, min=Integer.MAX_VALUE;
for (int x: nums) {
max=Math.max(max,x);
min=Math.min(min,x);
}
int gap=(max-min)/(n-1);
if (gap*(n-1)<max-min) gap++;
if (gap==0) return 0;
int[] minBracket=new int[n];
int[] maxBracket=new int[n];
Arrays.fill(minBracket, Integer.MAX_VALUE);
Arrays.fill(maxBracket, Integer.MIN_VALUE);
for (int x: nums) {
int i=(x-min)/gap;
maxBracket[i]=Math.max(maxBracket[i],x);
minBracket[i]=Math.min(minBracket[i],x);
}
int res=0;
int lo=maxBracket[0];//bracket[0] is not blank, at least min will be there
for (int i=1; i<n; i++) {
if (maxBracket[i]!=Integer.MIN_VALUE) {
res=Math.max(res,minBracket[i]-lo);
lo=maxBracket[i];
}
}
return res;
}
}
没有评论:
发表评论